Crack initiation in brittle materials
نویسندگان
چکیده
In this paper we study the crack initiation in a hyper-elastic body governed by a Griffith’s type energy. We prove that, during a load process through a time dependent boundary datum of the type t → tg(x) and in absence of strong singularities (this is the case of homogeneous isotropic materials) the crack initiation is brutal, i.e., a big crack appears after a positive time ti > 0. On the contrary, in presence of a point x of strong singularity, a crack will depart from x at the initial time of loading and with zero velocity. We prove these facts (largely expected by the experts of material science) for admissible cracks belonging to the large class of closed one dimensional sets with a finite number of connected components. The main tool we employ to address the problem is a local minimality result for the functional E(u, Γ ) := ∫ Ω f(x,∇v) dx + kH(Γ ), where Ω ⊆ R, k > 0 and f is a suitable Carathéodory function. We prove that if the uncracked configuration u of Ω relative to a boundary displacement ψ has at most uniformly weak singularities, then configurations (uΓ , Γ ) with H1(Γ ) small enough are such that E(u, ∅) < E(uΓ , Γ ).
منابع مشابه
Finite Element Modeling of Crack Initiation Angle Under Mixed Mode (I/II) Fracture
Present study deals with the prediction of crack initiation angle for mixed mode (I/II) fracture using finite element techniques and J-Integral based approach. The FE code ANSYS is used to estimate the stress intensity factor numerically. The estimated values of SIF were incorporated into six different crack initiation angle criteria to predict the crack initiation angle. Single edge crack spec...
متن کاملDynamic Initiation and Propagation of Multiple Cracks in Brittle Materials
Brittle materials such as rock and ceramic usually exhibit apparent increases of strength and toughness when subjected to dynamic loading. The reasons for this phenomenon are not yet well understood, although a number of hypotheses have been proposed. Based on dynamic fracture mechanics, the present work offers an alternate insight into the dynamic behaviors of brittle materials. Firstly, a sin...
متن کاملAn investigation into finding the optimum combination for dental restorations
The aim of the study was to find the optimum combination of materials and thicknesses to provide a tough, damage resistant multi-layer system with numerical methods to restore the damaged teeth. Extended Finite Element Method (XFEM) was used to assess the critical loads for the onset of damage modes such as radial cracks and plastic deformation in dental prostheses, which consist of a brittle o...
متن کاملLoading rates and the dynamic initiation toughness in brittle solids
The experimentally determined marked rise of the stress intensity factor required to initiate crack propagation in brittle solids under variably high loading rates, is analyzed. This problem of fracture initiation at the tip of a crack is considered in terms of activating a flaw at some distance away from the tip. By using a semi-infinite crack in an unbounded two-dimensional solid subjected to...
متن کاملCrack initiation patterns at electrode edges in multilayer ferroelectric actuators
In multilayer ferroelectric actuators, electrode edges are the main source of fracture due to the generation of non-uniform electric fields in their vicinity. The electric fields, in turn, induce incompatible strain fields and hence concentrated stresses, which may cause the ceramic to crack. In this paper, the crack initiation from the electrode edges is simulated using a phase-field model. Th...
متن کاملA boundary element analysis of crack-propagation mechanism of micro-cracks in rock-like specimens under a uniform normal tension
In this work, the mechanism for fracture of brittle substances such as rocks under a uniform normal tension is considered. The oriented straight micro-cracks are mostly created in all the polycrystalline materials resulting from the stress concentrations. The present work focuses on the interactions of the pre-existing micro-cracks, which can grow and propagate within a rock-like specimen. The ...
متن کامل